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Section 4-8 : Optimization

Example 1 We need to enclose a rectangular field with a fence. We have 500 feet of fencing
material and a building is on one side of the field and so won't need any fencing. Determine the
dimensions of the field that will enclose the largest area.

Solution

In all of these problems we will have two functions. The first is the function that we are actually
trying to optimize and the second will be the constraint. Sketching the situation will often help us to
arrive at these equations so let’s do that.

Building
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In this problem we want to maximize the area of a field and we know that will use 500 ft of fencing
material. So, the area will be the function we are trying to optimize and the amount of fencing is the
constraint. The two equations for these are, |
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Maximize : 4 = xy

Constraint : 500 =x+2y
Okay, we know how to find the largest or smallest value of a function provided it’s only got a single
variable. The area function (as well as the constraint) has two variables in it and so what we know
about finding absolute extrema won’t work. However, if we solve the constraint for one of the two
variables we can substitute this into the area and we will then have a function of a single variable.

So, let’s solve the constraint for x. Note that we could have just as easily solved for y but that would
have led to fractions and so, in this case, solving for x will probably be best.
x=500-2y

Substituting this into the area function gives a function of y.
A(y)=(300-2y)y=500y—2)°

Now we want to find the largest value this will have on the interval [O, 25()] . The limits in this

interval corresponds to taking y =0 (i.e. no sides to the fence) and ) = 250 (i.e. only two sides and
no width, also if there are two sides each must be 250 ft to use the whole 500ft).

Note that the endpoints of the interval won’t make any sense from a physical standpoint if we
actually want to enclose some area because they would both give zero area. They do, however, give
us a set of limits on y and so the Extramea Value Theoraem tells us that we will have a maximum value
of the area somewhere between the two endpoints. Having these limits will also mean that we can
use the process we discussed in the Finding Absolute Extrema section earlier in the chapter to find
the maximum value of the area.

So, recall that the maximum value of a continuous function (which we’ve got here) on a closed
interval (which we also have here) will occur at critical points and/or end points. As we've already
pointed out the end points in this case will give zero area and so don’t make any sense. That means
our only option will be the critical points.

So, let’s get the derivative and find the critical points.
A'(y)=500-4y

Setting this equal to zero and solving gives a lone critical point of y =125. Plugging this into the area
| gives an area of A(125) =312501t*. So according to the method from Absolute Extrema section

this must be the largest possible area, since the area at either endpoint is zero.

Finally, let’s not forget to get the value of x and then we’ll have the dimensions since this is what the
problem statement asked for. We can get the x by plugging in our y into the constraint.

x=500-2(125)=250
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Example 3 We want to construct a box with a square base and we only have 10 m? of material to bl‘
use in construction of the box. Assuming that all the material is used in the construction process '
determine the maximum volume that the box can have.

Solution

This example is in many ways the exact opposite of the previous example. In this case we want to
optimize the volume and the constraint this time is the amount of material used. We don’t have a
cost here, but if you think about it the cost is nothing more than the amount of material used times a
cost and so the amount of material and cost are pretty much tied together. If you can do one you can
do the other as well. Note as well that the amount of material used is really just the surface area of
the box.

As always, let’s start off with a quick sketch of the box.
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Now, as mentioned above we want to maximize the volume and the amount of material is the
constraint so here are the equations we’ll need.

Maximize : V = lwh=w>h

Constraint : 10 = 2w + 2wh + 2lh=2w* + 4wh

We’ll solve the constraint for h and plug this into the equation for the volume.
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Here are the first and second derivatives of the volume function.
V'(w):%(S—Z%wE) V”(w):—3w

Note as well here that provided w > 0, which from a physical standpoint we know must be true for
the width of the box, then the volume function will be concave down and so if we get a single critical
point then we know that it will have to be the value that gives the absolute maximum.

Setting the first derivative equal to zero and solving gives us the two critical points,

w =i\/§=il.2910

In this case we can exclude the negative critical point since we are dealing with a length of a box and
we know that these must be positive. Do not however get into the habit of just excluding any
negative critical point. There are problems where negative critical points are perfectly valid possible
solutions.

Now, as noted above we got a single critical point, 1.2910, and so this must be the value that gives
the maximum volume and since the maximum volume is all that was asked for in the problem

statement the answer is then : V(l .2910) =2.1517m>.

Note that we could also have noted here thatif 0 <w <1.2910 then V'(W) > 0 (using a test point
we have V'(l) =1> 0} and likewise if w >1.2910 then V'(w) <0 (using atest point we have

V’(Z) — —% <0)and soif we are to the left of the critical point the volume is always increasing and if
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we are to the right of the critical point the volume is always decreasing and so by the Method 2 above
we can also see that the single critical point must give the absolute maximum of the volume.

Finally, even though these weren’t asked for here are the dimension of the box that gives the
maximum volume.,

L 5-12910°

= —12910
2(1.2910)

[=w=12910

So, it looks like in this case we actually have a perfect cube.




