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Mathematics in Greece
I hales was the first logo to tyypt and bring 

back to Greece this study [geometry!; he 
himself discovered many propositions, and 
disclosed the underlying principles of many 
others to his successors, in some cases his 
method being more general, in others more 
empirical.

—Produs’s Summary (c. 450 CE) of 
Eudemus's History (c. 320 bce)1

report from a visit to Egypt with Plato by Simmias of Thebes 

in 379 BCE (from a dramatization by Plutarch of Chaeronea 
(first-second century ce)): “On our return from Egypt a party 

of Delians met us . . . and requested Plato, as a geometer, to solve a

problem set them by the god in a strange oracle. The oracle was 

to this effect: the present troubles of the Delians and the rest of 

the Greeks would be at an end when they had doubled the altar at 

Delos. As they not only were unable to penetrate its meaning, but 

failed absurdly in constructing the altar . . . , they called on Plato for 

help in their difficulty. Plato . . . replied that the god was ridiculing 

the Greeks for their neglect of education, deriding, as it were, our 

ignorance and bidding us engage in no perfunctory study of geometry; 

for no ordinary or near-sighted intelligence, but one well versed in 

the subject, was required to find two mean proportionals, that being 

the only way in which a body cubical in shape can be doubled with a 

similar increment in all dimensions. This would be done for them by 

Eudoxus of Cnidus ... ; they were not, however, to suppose that 

it was this the god desired, but rather that he was ordering the 

entire Greek nation to give up war and its miseries and cultivate 

the Muses, and by calming their passions through the practice of 

discussion and study of mathematics, so to live with one another that 

their relationships should be not injurious, but profitable.”2

As the quotation and the (probably) fictional account indicate, a new attitude toward mathe­
matics appeared in Greece sometime before the fourth century bce. It was no longer sufficient 
merely to calculate numerical answers to problems. One now had to prove that the results 
were correct. To double a cube, that is, to find a new cube whose volume was twice that of 
the original one, is equivalent to determining the cube root of 2, and that was not a difficult 
problem numerically. The oracle, however, was not concerned with numerical calculation, 
but with geometric construction. That in turn depended on geometric proof by some logical 
argument, the earliest manifestation of such in Greece being attributed to Thales.

This change in the nature of mathematics, beginning around 600 bce, was related to the 
great differences between the emerging Greek civilization and those of Egypt and Babylonia, 
from whom the Greeks learned. The physical nature of Greece with its many mountains 
and islands is such that large-scale agriculture was not possible. Perhaps because of this, 
Greece did not develop a central government. The basic political organization was the polis, 
or city-state. The governments of the city-state were of every possible variety but in general 
controlled populations of only a few thousand. Whether the governments were democratic 
or monarchical, they were not arbitrary. Each government was ruled by law and therefore 
encouraged its citizens to be able to argue and debate. It was perhaps out of this characteristic 
that there developed the necessity for proof in mathematics, that is, for argument aimed at 
convincing others of a particular truth.

Because virtually every city-state had access to the sea, there was constant trade, both 
in Greece itself and with other civilizations. As a result, the Greeks were exposed to many 
different peoples and, in fact, themselves settled in areas all around the eastern Mediterranean. 
In addition, a rising standard of living helped to attract able people from other parts of the 
world. Hence, the Greeks were able to study differing answers to fundamental questions about 
the world. They began to create their own answers. In many areas of thought, they learned 
not to accept what had been handed down from ancient times. Instead, they began to ask, and 
to try to answer, “Why?” Greek thinkers eventually came to the realization that the world 
around them was knowable, that they could discover its characteristics by rational inquiry. 
Hence, they were anxious to discover and expound theories in such fields as mathematics, 
physics, biology, medicine, and politics. And although Western civilization owes a great debt 
to Greek society in literature, art, and architecture, it is to Greek mathematics that we owe the 
idea of mathematical proof, an idea at the basis of modern mathematics and, by extension, at 
the foundation of our modern technological civilization.

This chapter discusses the Greek numerical system and then considers the contributions 
of the earliest Greek mathematicians beginning in the sixth century bce. It then deals with 
the beginnings of the Greek approach to geometric problem solving and concludes with the 
work of Plato and Aristotle in the fourth century bce on the nature of mathematics and the 
idea of logical reasoning.

THE EARLIEST GREEK MATHEMATICS
Unlike the situation with Egyptian and Babylonian mathematics, there are virtually no extant 
texts of Greek mathematics that were actually written in the first millennium bce. What we 
have today are copies of copies of copies, where the actual written documents date from

From Chapter 2 of A History of Mathematics, Third Edition. Victor J. Katz. 
Copyright © 2009 by Pearson Education, Inc. All rights reserved.

32 33



34 Chapter 2 Thi Beginnings oi Mathematics in Greeci 2.1 The Earliest Greek Mathematics .33

not much earlier than 1000 ce. And even then, the earliest complete texts (of which these 
are copies) are not from earlier than about 300 bce. So to tell the story of early Greek 
mathematics, we are forced to rely on works that were originally written much later than 
the actual occurrences. Thus, given that these works do not always agree with each other, 
there is a considerable amount of controversy about some of the early developments. We will 
try to present the story as coherently as possible, but will note many areas in which scholarly 
opinion varies.

2.1.1 Greek Numbers
From what fragments exist from ancient times, and even from some of the copies, we do 
know that the Greeks represented numbers in a ciphered system using their alphabet, from 
as far back as the sixth century bce. The representation was as shown in Table 2.1, where 
the letters ç (digamma) for 6, 9 (koppa) for 90, and (sampi) for 900 are letters that by 
this time were no longer in use. Hence, 754 was written ÿvó and 293 was written cr9 y. To 
represent thousands, a mark was made to the left of the letters a through 60 for example, '6 
represented 9000. Larger numbers still were written using the letter M to represent myriads 
(10,000), with the number of myriads written above: M8 = 40,000, M*?0* = 71,750,000.

FIGURE 2.1
Water tunnel on the island 
of Samos

Spring North 
conduit

Mt. Kastro

TABLE 2.1 Representation of a number system used by the Greeks as early as the sixth century bce.

Letter Value Letter Value Letter Value

a 1 t 10 P 100
ß 2 K 20 (7 200

y 3 k 30 T 300
8 4 P 40 V 400
€ 5 V 50 0 500

Ç 6 e 60 X 600
7 0 70 700

h 8 7T 80 co 800
e 9 9 90 900

Among the earliest extant inscriptions in this alphabetic cipher were numbers inscribed 
on the walls of the tunnel on the island of Samos constructed by Eupalinus around 550 bce 
to bring water from a spring outside the capital city through a mountain to a point inside the 
city walls. Modern archaeological excavations of the tunnel have revealed that it was dug by 
two teams that met in the middle (Fig. 2.1). There are no records as to how the construction 
crews managed to keep digging in the correct direction, hut there have been many theories 
as to how this was done. The latest archaeological evidence leads to the conclusion that the 
builders used the simplest possible mathematical techniques, such as lining up flags to make 
sure that the diggers kept digging in the right direction. And evidently the numbers on the 
walls, 10, 20, 30, ... , 200 (from the south entrance) and 10, 20, 30, . . . , 300 (from the 
north entrance) were written to keep tabs on the distances dug. Although most of the tunnel is 

straight, there is one clear jog in the tunnel, probably necessitated by difficult soil conditions. 
Somehow, Eupalinus managed to figure out at that point how to get the digging back to the 
correct direction.

The numbers in the Eupalinus tunnel are integers. But Greek merchants and accountants, 
for example, needed fractions as well. Generally, in this early period, the Greeks used the 
Egyptian system of “parts.” There was a special symbol L, which represented a half; ß 
represented two-thirds. For the rest, the system was standard: y represented one-third, 8 one­
fourth, and so on. More complicated fractions than simple parts arc expressed as the sum of 
an integer and different simple parts. For example, the fraction we represent as 12/17 might 
be represented as Lißi^X8vä^ri, which in modern notation would be 5 + 75 + 77 + 3^ + 
57 + We do not know if there was any systematic method for figuring out which unit 
fractions to use, for there arc many possible ways to represent 12/17, or as the Greeks would 
say, the “seventeenth part of twelve.” In addition, there is clearly the possibility of confusion 
between the representations of, for example, + 3 and But all those who needed to 
calculate evidently had methods of determining how they would use this system and how to 
avoid confusion.3

Fortunately for us, most of the early Greek mathematics wc will discuss involves little 
calculation. As Aristotle wrote in his Metaphysics,

At first, he who invented any art whatever that went beyond the common perceptions of man was 
naturally admired by men, not only because there was something useful in the inventions, but 
because he was thought wise and superior to the rest. But as more arts were invented, and some 
were directed to the necessities of life, others to recreation, the inventors of the latter were naturally 
always regarded as wiser than the inventors of the former, because their branches of knowledge 
did not aim at utility. Hence when all such inventions were already established, the sciences which 
do not aim at giving pleasure or at the necessities of life were discovered, and first in the places 
where men first began to have leisure. This is why the mathematical arts were founded in Egypt; 
for there the priestly caste was allowed to be at leisure.4
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FIGURE 2.2
Thales on a Greek stamp

FIGURE 2.3
Pythagoras on a Greek coin
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Although Aristotle referred only to Egypt, he certainly believed that in Greece as well 
mathematics was the province of a leisured class, people who did not deal with such mun­
dane matters as measurement or accountancy problems. Thus, in Greece as in Egypt and 
Mesopotamia, mathematics of the type we will discuss in this chapter and the next was the 
province of a very limited group of people, virtually all of whom were part of the ruling 
groups. As we will see, this theoretical mathematics was to be a central part of the education 
of the rulers of the state.

2.1.2 Thales
The most complete reference to the earliest Greek mathematics is in the commentary to Book 
I of Euclid’s Elements written in the fifth century ce by Proclus, some 800 to 1000 years after 
the fact. This account of the early history of Greek mathematics is generally thought to be a 
summary of a formal history written by Eudemus of Rhodes in about 320 bce, the original of 
which is lost. In any case, the earliest Greek mathematician mentioned is Thales (c. 624-547 
bce), from Miletus in Asia Minor (Fig. 2.2). There are many stories recorded about him, most 
written down several hundred years after his death. These include his prediction of a solar 
eclipse in 585 bce and his application of the angle-side-angle criterion of triangle congruence 
to the problem of measuring the distance to a ship at sea. He is said to have impressed Egyptian 
officials by determining the height of a pyramid by comparing the length of its shadow to that 
of the length of the shadow of a stick of known height. Thales is also credited with discovering 
the theorems that the base angles of an isosceles triangle are equal and that vertical angles 
are equal and with proving that the diameter of a circle divides the circle into two equal parts. 
Although exactly how Thales “proved” any of these results is not known, it does seem clear 
that he advanced some logical arguments.

Aristotle related the story that Thales was once reproved for wasting his time on idle 
pursuits. Therefore, noticing from certain signs that a bumper crop of olives was likely in 
a particular year, he quietly cornered the market on oil presses. When the large crop in fact 
was harvested, the olive growers all had to come to him for presses. He thus demonstrated 
that a philosopher or a mathematician could in fact make money if he thought it worthwhile. 
Whether this or any of the other stories are literally true is not known. In any case, the Greeks 
of the fourth century bce and later credited Thales with beginning the Greek mathematical 
tradition. In fact, he is generally credited with beginning the entire Greek scientific enterprise, 
including recognizing that material phenomena are governed by discoverable laws.

2.1.3 Pythagoras and His School
There are also extensive but unreliable stories about Pythagoras (c. 572-497 bce), including 
that he spent much time not only in Egypt, where Thales was said to have visited, but also 
in Babylonia (Fig. 2.3). Around 530 bce, after having been forced to leave his native Samos, 
he settled in Crotona, a Greek town in southern Italy. There he gathered around him a group 
of disciples, later known as the Pythagoreans, in what was considered both a religious order 
and a philosophical school. From the surviving biographies, all written centuries after his 
death, we can infer that Pythagoras was probably more of a mystic than a rational thinker, 
but one who commanded great respect from his followers. Since there are no extant works
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ascribed to Pythagoras or the Pythagoreans, the mathematical doctrines of his school can 
only be surmised from the works of later writers, including the “neo-Pylhagoreans.”

One important such mathematical doctrine was that “number was the substance of all 
things,” that numbers, that is, positive integers, formed the basic organizing principle of the 
universe. What the Pythagoreans meant by this was not only that all known objects have a 
number, or can be ordered and counted, but also that numbers are at the basis of all physical 
phenomena. For example, a constellation in the heavens could be characterized by both the 
number of stars that compose it and its geometrical form, which itself could be thought of 
as represented by a number. The motions of the planets could be expressed in terms of ratios 
of numbers. Musical harmonies depend on numerical ratios: two plucked strings with ratio 
of length 2 : 1 give an octave, with ratio 3 :2 give a fifth, and with ratio 4 : 3 give a fourth. 
Out of these intervals an entire musical scale can be created. Finally, the fact that triangles 
whose sides are in the ratio of 3 :4 :5 are right-angled established a connection of number 
with angle. Given the Pythagoreans’ interest in number as a fundamental principle of the 
cosmos, it is only natural that they studied the properties of positive integers, what we would 
call the elements of the theory of numbers.

The starting point of this theory was the dichotomy between the odd and the even. The 
Pythagoreans probably represented numbers by dots or, more concretely, by pebbles. Hence, 
an even number would be represented by a row of pebbles that could be divided into two equal 
parts. An odd number could not be so divided because there would always be a single pebble 
left over. It was easy enough using pebbles to verify some simple theorems. For example, the 
sum of any collection of even numbers is even, while the sum of an even collection of odd 
numbers is even and that of an odd collection is odd (Fig. 2.4).

FIGURE 2.4
(a) The sum of even numbers 
is even, (b) An even sum of 
odd numbers is even, (c) An 
odd sum of odd numbers is 
odd.
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Among other simple corollaries of the basic results above were the theorems that the square 
of an even number is even, while the square of an odd number is odd. Squares themselves 
could also be represented using dots, providing simple examples of “figúrate” numbers. If 
one represents a given square in this way, for example, the square of 4, it is easy to see that 
the next higher square can be formed by adding a row of dots around two sides of the original 
figure. There are 2 • 4 + 1 = 9 of these additional dots. The Pythagoreans generalized this 
observation to show that one can form squares by adding the successive odd numbers to 1. 
For example, 1 4- 3 = 22, I 4- 3 4- 5 = 32, and 1 4- 3 4- 5 4- 7 = 42. The added odd numbers 
were in the L shape generally called a gnomon (Fig. 2.5). Other examples of figúrate numbers 
include the triangular numbers, also shown in Figure 2.5, produced by successive additions of 
the natural numbers themselves. Similarly, oblong numbers, numbers of the form n(n 4- 1), 
are produced by beginning with 2 and adding the successive even numbers (Fig. 2.6). The first
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FIGURE 2.5
Square and triangular 
numbers

Chapter 2 Im Beginnings of Mathematics in Greeci 2.1 Fm Earliest Greek Mai hematr. s 30

FIGURE 2.6
Oblong numbers

FIGURE 2.7
Two theorems on triangular 
numbers

FIGURE. 2.8
An odd square that is the 
difference of two squares
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four of these are 2, 6, 12, and 20, that is, 1 x 2, 2x3, 3x4, and 4x5. Figure 2.7 provides 
easy demonstrations of the results that any oblong number is the double of a triangular number 
and that any square number is the sum of two consecutive triangular numbers.

Another number theoretical problem of particular interest to the Pythagoreans was the 
construction of Pythagorean triples. There is evidence that they saw that foran odd number«, 
lhetriple(n, isa Pythagorean triple, while if m is even, (m, (y)2 — 1, (y)2 + 1)
is such a triple. An explanation of how the Pythagoreans may have demonstrated the first of 
these results from their dot configurations begins with the remark that any odd number is 
the difference of two consecutive squares. Hence, if the odd number is itself a square, then 
three square numbers have been found such that the sum of two equals the third (Fig. 2.8). To 
find the sides of these squares, the Pythagorean triple itself, note that the side of the gnomon 
is given since it is the square of an odd number. The side of the smaller square is found by 
subtracting I from the gnomon and halving the remainder. The side of the larger square is one 
more than that of the smaller. A similar proof can be given for the second result. Although 
there is no explicit testimony to additional results involving Pythagorean triples, it seems 
probable that the Pythagoreans considered the odd and even properties of these triples. For 
example, it is not difficult to prove that in a Pythagorean triple, if one of the terms is odd, 
then two of them must be odd and one even.

The geometric theorem out of which the study of Pythagorean triples grew, namely, that 
in any right triangle the square on the hypotenuse is equal to the sum of the squares on the 
legs, has long been attributed to Pythagoras himself, but there is no direct evidence of this. 
The theorem was known in other cultures long before Pythagoras lived. Nevertheless, it was
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FIGURE 2.9
The incommensurability of 
the side and idagonal of a 
square (first possibility)

the knowledge of this theorem by the fifth century bce that led to the first discovery of what 
is today called an irrational number.

For the early Greeks, number always was connected with things counted. Because counting 
requires that the individual units must remain the same, the units themselves can never be 
divided or joined to other units. In particular, throughout formal Greek mathematics, a number 
meant a “multitude composed of units,” that is, a counting number. Furthermore, since the 
unit 1 was not a multitude composed of units, it was not considered a number in the same 
sense as the other positive integers. Even Aristotle noted that two was the smallest “number.”

Because the Pythagoreans considered number as the basis of the universe, everything could 
be counted, including lengths. In order to count a length, of course, one needed a measure. The 
Pythagoreans thus assumed that one could always find an appropriate measure. Once such a 
measure was found in a particular problem, it became the unit and thus could not be divided. 
In particular, the Pythagoreans assumed that one could find a measure by which both the side 
and diagonal of a square could be counted. In other words, there should exist a length such 
that the side and diagonal were integral multiples of it. Unfortunately, this turned out not to be 
true. The side and diagonal of a square are incommensurable; there is no common measure. 
Whatever unit of measure is chosen such that an exact number will fit the length of one of 
these lines, the other line will require some number plus a portion of the unit, and one cannot 
divide the unit. (In modern terms, this result is equivalent to the statement that the square root 
of two is irrational.) We do not know who discovered this result, but scholars believe that the 
discovery took place in approximately 430 bce. And although it is frequently stated that this 
discovery precipitated a crisis in Greek mathematics, the only reliable evidence shows that 
the discovery simply opened up the possibility of some new mathematical theories. In fact, 
Aristotle wrote in his Metaphysics,

For all men begin, as we said, by wondering that things are as they arc, as they do about self-moving 
marionettes, or about the solstices or the incommensurability of the diagonal of a square with the 
side; for it seems wonderful to all who have not yet seen the reason, that there is a thing which 
cannot be measured even by the smallest unit. But we must end in the contrary and, according 
to the proverb, the better state, as is the case in these instances too when men learn the cause; 
for there is nothing which would surprise a geometer so much as if the diagonal turned out to be 
commensurable.5

In other words, Aristotle seems to say that although the incommensurability is initially 
surprising, once one finds the reason—and clearly Greek thinkers did so—it then becomes 
very unsurprising.

So what is the “cause” of the incommensurability and how did a Greek thinker discover 
it? The only hint is in another work of Aristotle, who notes that if the side and diagonal 
are assumed commensurable, then one may deduce that odd numbers equal even numbers. 
One possibility as to the form of the discovery is the following: Assume that the side BD and 
diagonal DH in Figure 2.9 are commensurable, that is, that each is represented by the number 
of times it is measured by their common measure. It may be assumed that at least one of these 
numbers is odd, for otherwise there would be a larger common measure. Then the squares 
DBHI and AGFE on the side and diagonal, respectively, represent square numbers. The 
latter square is clearly double the former, so it represents an even square number. Therefore, 
its side AG = DH also represents an even number and the square AGFE is a multiple of 
four. Since DBHI is half of AGFE, it must be a multiple of two; that is, it represents an even
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FIGURE 2.10
Dissection argument for 
determining the diagonal 
of a square

square. Hence, its side BD must also be even. But this contradicts the original assumption, 
that one of DH, B D, must be odd. Therefore, the two lines are incommensurable.

It must be realized that such a proof presupposes that by this time the notion of proof 
was ingrained into the Greek conception of mathematics. Although there is no evidence that 
the Greeks of the fifth century bce possessed the entire mechanism of an axiomatic system 
and had explicitly recognized that certain statements need to be accepted without proof, they 
certainly had decided that some form of logical argument was necessary for determining the 
truth of a particular result. Furthermore, this entire notion of incommensurability represents 
a break from the Babylonian and Egyptian concepts of calculation with numbers. There is 
naturally no question that one can assign a numerical value to the length of the diagonal of a 
square of side one unit, as the Babylonians did, but the notion that no “exact” value can be 
found is first formally recognized in Greek mathematics.

Although the Greeks could not “measure” the diagonal of a square, that line, as a geometric 
object, was still significant. Plato, in his dialogue Meno, had Socrates question a slave boy 
about finding a square whose area is double that of square of side two feet. The boy first 
suggests that each side should be doubled. Socrates pointed out that this would give a square 
of area sixteen. The boy’s second guess, that the new side should be three feet, is also evidently 
incorrect. So Socrates then led him to figure out that if one draws a diagonal of the original 
square and then constructs a square on that diagonal, the new square is exactly double the 
old one. But Socrates’ proof of this is simply by a dissection argument (Fig. 2.10). There is 
no mention of the length of this diagonal at all.6

2.1.4 Squaring the Circle and Doubling the Cube
The idea of proof and the change from numerical calculation are further exemplified in the 
mid-fifth century attempts to solve two geometric problems, problems that were to occupy 
Greek mathematicians for centuries: the squaring of the circle (already attempted in Egypt) 
and the duplication of the cube (as noted in the oracle). The multitude of attacks on these 
particular problems and the slightly later one of trisecting an arbitrary angle serve to remind 
us that a central goal of Greek mathematics was geometrical problem solving, and that, 
to a large extent, the great body of theorems found in the major extant works of Greek 
mathematics served as logical underpinnings for these solutions. Interestingly, that these 
problems apparently could not be solved via the original tools of straightedge and compass 
was known to enough of the Greek public that Aristophanes could refer to “squaring the 
circle” as something absurd in his play The Birds, first performed in 414 bce.

Hippocrates of Chios (mid-fifth century bce) (no connection to the famous physician) was 
among the first to attack the cube and circle problems. As to the first of these, Hippocrates 
perhaps realized that the problem was analogous to the simpler problem of doubling a square 
of side a. That problem could be solved by constructing a mean proportional b between a 
and 2a, a length b such that a : b = b : 2a, for then b2 = 2a2. From the fragmentary records 
of Hippocrates’ work, it is evident that he was familiar with performing such constructions. 
In any case, ancient accounts record that Hippocrates was the first to come up with the idea 
of reducing the problem of doubling the cube of side a to the problem of finding two mean 
proportionals b, c, between a and 2a. For if a : b = b : c = c : 2a, then

a3 : b3 = (a : b)3 = (a : b)(b :c)(c :2a) = a :2a = 1 : 2 

FIGURE 2.11
Hippocrates’ lune on an 
isosceles right triangle

FIGURE 2.12
Plato and Aristotle: A detail of 
Raphael's painting The School 
of Athens

and b3 = 2a3. Hippocrates was not, however, able to construct the two mean proportionals 
using the geometric tools at his disposal. It was left to some of his successors to find this 
construction.

Hippocrates similarly made progress in the squaring of the circle, essentially by showing 
that certain lunes (figures bounded by arcs of two circles) could be “squared,” that is, that 
their areas could be shown equal to certain regions bounded by straight lines. To do this, he 
first had to show that the areas of circles are to one another as the squares on their diameters, 
a fact evidently known to the Babylonian scribes. How he accomplished this is not known. 
In any case, he could now square the lune on a quadrant of a circle.

Suppose that semicircle ABC is circumscribed about the isosceles right triangle ABC and 
that around the base AC an arc ADC of a circle is drawn so that segment ADC is similar to 
segments AB and BC; that is, the arcs of each are the same fraction of a circle, in this case, 
one-quarter (Fig. 2.11). It follows from the result on areas of circles that similar segments arc 
also to one another as the squares on their chords. Therefore, segment ADC is equal to the 
sum of segments AB and BC. If we add to each of these areas the part of the triangle outside 
arc ADC, it follows that the lune ABCD is equal to the triangle ABC.

Although Hippocrates gave constructions for squaring other lunes or combinations of 
lunes, he was unable to actually square a circle. Nevertheless, it is apparent that his attempts on 
the squaring problem and the doubling problem were based on a large collection of geometric 
theorems, theorems that he organized into the first recorded book on the elements of geometry.

THE TIME OF PLATO
The time of Plato (429-347 bce) (Fig. 2.12) saw significant efforts made toward solving 
the problems of doubling the cube and squaring the circle and toward dealing with incom­
mensurability and its impact on the theory of proportion. These advances were achieved 
partly because Plato’s Academy, founded in Athens around 385 bce, drew together schol­
ars from all over the Greek world. These scholars conducted seminars in mathematics and 
philosophy with small groups of advanced students and also conducted research in mathe­
matics, among other fields. There is an unverifiable story, dating from some 700 years after 
the school’s founding, that over the entrance to the Academy was inscribed the Greek phrase 
AFEQMETRHTOS MHAEIS EIEITQ, meaning roughly, “Let no one ignorant of geome­
try enter here.” A student “ignorant of geometry” would also be ignorant of logic and hence 
unable to understand philosophy.

The mathematical syllabus inaugurated by Plato for students at the Academy is described 
by him in his most famous work, The Republic, in which he discussed the education that 
should be received by the philosopher-kings, the ideal rulers of a state. The mathematical part 
of this education was to consist of five subjects: arithmetic (that is, the theory of numbers), 
plane geometry, solid geometry, astronomy, and harmonics (music). The leaders of the state 
are “to practice calculation, not like merchants or shopkeepers for purposes of buying and 
selling, but with a view to war and to help in the conversion of the soul itself from the world 
of becoming to truth and reality. ... It will further our intentions if it is pursued for the 
sake of knowledge and not for commercial ends. ... It has a great power of leading the 
mind upwards and forcing it to reason about pure numbers, refusing to discuss collections of
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material things which can be seen and touched.”7 In other words, arithmetic is to be studied 
for the training of the mind (and incidentally for its military usefulness). The arithmetic of 
which Plato writes includes not only the Pythagorean number theory already discussed but 
also additional material that is included in Books VII-IX of Euclid's Elements and will be 
considered later.

Again, a limited amount of plane geometry is necessary for practical purposes, particularly 
in war, when a general must be able to lay out a camp or extend army lines. But even though 
mathematicians talk of operations in plane geometry such as squaring or adding, the object 
of geometry, according to Plato, is not to do something but to gain knowledge, “knowledge, 
moreover, of what eternally exists, not of anything that comes to be this or that at some time 
and ceases to be.”8 So, as in arithmetic, the study of geometry—and for Plato this means 
theoretical, not practical, geometry—is for “drawing the soul towards truth.” It is importanat 
to mention here that Plato distinguished carefully between, for example, the real geometric 
circles drawn by people and the essential or ideal circle, held in the mind, which is the true 
object of geometric study. In practice, one cannot draw a circle and its tangent with only one 
point in common, although this is the nature of the mathematical circle and the mathematical 
tangent.

The next subject of mathematical study should be solid geometry. Plato complained in 
the Republic that this subject has not been sufficiently investigated. This is because “no 
state thinks | it] worth encouraging” and because “students arc not likely to make discoveries 
without a director, who is hard to find.”9 Nevertheless, Plato felt that new discoveries would 
be made in this field, and, in fact, much was done between the dramatic date of the dialogue 
(about 400 BCE) and the time of Euclid, some of which is included in Books XI-XIII of the 
Elements.

In any case, a decent knowledge of solid geometry was necessary for the next study, that 
of astronomy, or, as Plato puts it, “solid bodies in circular motion.” Again, in this field 
Plato distinguished between the stars as material objects with motions showing accidental 
irregularities and variations and the ideal abstract relations of their paths and velocities 
expressed in numbers and perfect figures such as the circle. It is this mathematical study of 
ideal bodies that is the true aim of astronomical study. Thus, this study should take place by 
means of problems and without attempting to actually follow every movement in the heavens.

Similarly, a distinction is made in the final subject, of harmonics, between material sounds 
and their abstraction. The Pythagoreans had discovered the harmonics that occur when strings 
arc plucked together with lengths in the ratios of certain small positive integers. But in 
encouraging his philosopher-kings in the study of harmonics, Plato meant for them to go 
beyond the actual musical study, using real strings and real sounds, to the abstract level 
of “inquiring which numbers arc inherently consonant and which are not, and for what 
reasons.”10 That is, they should study the mathematics of harmony, just as they should 
study the mathematics of astronomy, and should not be overly concerned with real stringed 
instruments or real stars. It turns out that a principal part of the mathematics necessary in 
both studies is the theory of ratio and proportion, the subject matter of Euclid’s Elements, 
Book V.

Although it is not known whether the entire syllabus discussed by Plato was in fact taught 
at the Academy, it is certain that Plato brought in the best mathematicians of his day to teach 
and do research, including Theaetetus (c. 417-369 bce) and Eudoxus (c. 408-355 bce), who
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we will discuss later. The most famous person associated with the Academy, however, was 
Aristotle.

FIGURE 2.13
Bust of Aristotle

F1GURF 2.14
Painting of Alexander on 
horseback

ARISTOTLE
Aristotle (384-322 bce) (Fig. 2.13) studied at Plato’s Academy in Athens from the time he 
was 18 until Plato’s death in 347. Shortly thereafter, he was invited to the court of Philip II 
of Macedon to undertake the education of Philip’s son Alexander, who soon after his own 
accession to the throne in 335 began his successful conquest of the Mediterranean world 
(Fig. 2.14). Meanwhile, Aristotle returned to Athens where he founded his own school, 
the Lyceum, and spent the rest of his days writing, lecturing, and holding discussions 
with his advanced students. Although Aristotle wrote on many subjects, including politics, 
ethics, epistemology, physics, and biology, his strongest influence as far as mathematics was 
concerned was in the area of logic.

2.3.1 Logic
Although there is only fragmentary evidence of logical argument in mathematical works be­
fore the lime of Euclid, some appearing in the work of Hippocrates already mentioned, it is 
apparent that from at least the sixth century bce, the Greeks were developing the notions of 
logical reasoning. The active political life of the city-states encouraged the development of 
argumentation and techniques of persuasion. And there arc many examples from philosoph­
ical works, especially those of Parmenides (late sixth century bce) and his disciple Zeno of 
Elea (fifth century bce), that demonstrate various detailed techniques of argument. In partic­
ular, there arc examples of such techniques as reductio ad absurdum, in which one assumes 
that a proposition to be proved is false and then derives a contradiction, and modus tollens, 
in which one shows first that if A is true, then B follows, shows next that B is not true, and 
concludes finally that A is not true. It was Aristotle, however, who took the ideas developed 
over the centuries and first codified the principles of logical argument.

Aristotle believed that logical arguments should be built out of syllogisms, where “a 
syllogism is discourse in which, certain things being stated, something other than what is 
stated follows of necessity from their being so.”11 In other words, a syllogism consists of 
certain statements that are taken as true and certain other statements that are then necessarily 
true. For example, the argument “if all monkeys are primates, and all primates are mammals, 
then it follows that all monkeys arc mammals,” exemplifies one type of syllogism, whereas 
the argument “if all Catholics are Christians and no Christians are Moslem, then it follows 
that no Catholic is Moslem,” exemplifies a second type.

After clarifying the principles of dealing with syllogisms, Aristotle noted that syllogistic 
reasoning enables one to use “old knowledge” to impart new. If one accepts the premises of 
a syllogism as true, then one must also accept the conclusion. One cannot, however, obtain 
every piece of knowledge as the conclusion of a syllogism. One has to begin somewhere 
with truths that arc accepted without argument. Aristotle distinguished between the basic 
truths that arc peculiar to each particular science and the ones that are common to all. The 
former are often called postulates, while the latter arc known as axioms. As an example 
of a common truth, he gave the axiom “take equals from equals and equals remain.” His
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examples of peculiar truths for geometry are “the definitions of line and straight.” By these 
he presumably meant that one postulates the existence of straight lines. Only for the most basic 
ideas did Aristotle permit the postulation of the object defined. In general, however, whenever 
one defines an object, one must in fact prove its existence. “For example, arithmetic assumes 
the meaning of odd and even, square and cube, geometry that of incommensurable, . . . , 
whereas the existence of these attributes is demonstrated by means of the axioms and from 
previous conclusions as premises.”12 Aristotle also listed certain basic principles of argument, 
principles that earlier thinkers had used intuitively. One such principle is that a given assertion 
cannot be both true and false. A second principle is that an assertion must be either true or 
false; there is no other possibility.

For Aristotle, logical argument according to his methods is the only certain way of attaining 
scientific knowledge. There may be other ways of gaining knowledge, but demonstration via 
a series of syllogisms is the one way by which one can be sure of the results. Because one 
cannot prove everything, however, one must always be careful that the premises, or axioms, 
are true and well known As Aristotle wrote, “syllogism there may indeed be without these 
conditions, but such syllogism, not being productive of scientific knowledge, will not be 
demonstration.”13 In other words, one can choose any axioms one wants and draw conclusions 
from them, but if one wants to attain knowledge, one must start with “true” axioms. The 
question then becomes, how can one be sure that one’s axioms are true? Aristotle answered 
that these primary premises are learned by induction, by drawing conclusions from our own 
sense perception of numerous examples. This question of the “truth” of the basic axioms 
has been discussed by mathematicians and philosophers ever since Aristotle’s time. On the 
other hand, Aristotle’s rules of attaining knowledge by beginning with axioms and using 
demonstrations to gain new results has become the model for mathematicians to the present 
day.

Although Aristotle emphasized the use of syllogisms as the building blocks of logical 
arguments, Greek mathematicians apparently never used them. They used other forms, as 
have most mathematicians down to the present. Why Aristotle therefore insisted on syllogisms 
is not clear. The basic forms of argument actually used in mathematical proof were analyzed 
in some detail in the third century BCE by the Stoics, of whom the most prominent was 
Chrysippus (280-206 bce). This form of logic is based on propositions, statements that can 
be either true or false, rather than on the Aristotelian syllogisms. The basic rules of inference 
dealt with by Chrysippus, with their traditional names, are the following, where p, q, and r 
stand for propositions:

( 1 ) Modus ponens (2) Modus tollens
If p, then q. If p, then q.

P- Not q.
Therefore, q. Therefore, not p.

(3) Hypothetical syllogism 
If p, then q.
If q, then r.
Therefore, if p, then r.

(4) Alternative syllogism 
P^q.
Not p.
Therefore, q.
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For example, from the statements “if it is daytime, then it is light” and “it is daytime,” one 
can conclude by modus ponens that “it is light.” From “if it is daytime, then it is light” and 
“it is not light,” one concludes by modus tollens that “it is not daytime.” Adding to the first 
hypothesis the statement “if it is light, then I can see well,” one concludes by the hypothetical 
syllogism that “if it is daytime, then I can see well.” Finally, from “either it is daytime or it is 
nighttime” and “it is not daytime,” the rule of the alternative syllogism allows us to conclude 
that “it is nighttime.”

2.3.2 Number versus Magnitude
Another of Aristotle’s contributions was the introduction into mathematics of the distinction 
between number and magnitude. The Pythagoreans had insisted that all was number, but 
Aristotle rejected that idea. Although he placed number and magnitude in a single category, 
“quantity,” he divided this category into two classes, the discrete (number) and the continuous 
(magnitude). As examples of the latter, he cited lines, surfaces, bodies, and time. The primary 
distinction between these two classes is that a magnitude is “that which is divisible into 
divisibles that are infinitely divisible,”14 while the basis of number is the indivisible unit. Thus, 
magnitudes cannot be composed of indivisible elements, whereas numbers inevitably are.

Aristotle further clarified this idea in his definition of “in succession” and “continuous.” 
Things are in succession if there is nothing of their own kind intermediate between them. For 
example, the numbers 3 and 4 are in succession. Things are continuous when they touch and 
when “the touching limits of each become one and the same.”15 Line segments are therefore 
continuous if they share an endpoint. Points cannot make up a line, because they would have 
to be in contact and share a limit. Since points have no parts, this is impossible. Il is also 
impossible for points on a line to be in succession, that is, for there to be a “next point.” 
For between two points on a line is a line segment, and one can always find a point on that 
segment.

Today, a line segment is considered to be composed of an infinite collection of points, but 
to Aristotle this would make no sense. He did not conceive of a completed or actual infinity. 
Although he used the term “infinity,” he only considered it as potential. For example, one can 
bisect a continuous magnitude as often as one wishes, and one can count these bisections. But 
in neither case does one ever come to an end. Furthermore, mathematicians really do not need 
infinite quantities such as infinite straight lines. They only need to postulate the existence of, 
for example, arbitrarily long straight lines.

2.3.3 Zeno’s Paradoxes
One of the reasons Aristotle had such an extended discussion of the notions of infinity, 
indivisibles, continuity, and discreteness was that he wanted to refute the famous paradoxes 
of Zeno. Zeno stated these paradoxes, perhaps in an attempt to show that the then current 
notions of motion were not sufficiently clear, but also to show that any way of dividing space 
or time must lead to problems. The first paradox, the Dichotomy, “asserts the non-existence of 
motion on the ground that that which is in locomotion must arrive at the half-way stage before 
it arrives at the goal.”16 (Of course, it must then cover the half of the half before it reaches 
the middle, etc.) The basic contention here is that an object cannot cover a finite distance 
by moving during an infinite sequence of time intervals. The second paradox, the Achilles,
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asserts a similar point: “In a race, the quickest runner can never overtake the slowest, since 
the pursuer must first reach the point whence the pursued started, so that the slower must 
always hold a lead.”17 Aristotle, in refuting the paradoxes, concedes that time, like distance, 
is infinitely divisible. But he is not bothered by an object covering an infinity of intervals in 
a finite amount of time. For “while a thing in a finite time cannot come in contact with things 
quantitatively infinite, it can come in contact with things infinite in respect to divisibility, for 
in this sense time itself is also infinite.”18 In fact, given the motion in cither of these paradoxes, 
one can calculate when one will reach the goal or when the fastest runner will overtake the 
slowest.

Zeno’s third and fourth paradoxes show what happens when one asserts that a continuous 
magnitude is composed of indivisible elements. The Arrow states that “if everything when it 
occupies an equal space is at rest, and if that which is in locomotion is always occupying such 
a space at any moment, the flying arrow is therefore motionless.”19 In other words, if there 
are such things as indivisible instants, the arrow cannot move during that instant. Since if, in 
addition, lime is composed of nothing but instants, then the moving arrow is always at rest. 
Aristotle refutes this paradox by noting that not only are there no such things as indivisible 
instants, but motion itself can only be defined in a period of time. A modern refutation, on the 
other hand, would deny the first premise because motion is now defined by a limit argument.

The paradox of the Stadium supposes that there are three sets of identical objects: the A’s 
at rest, the ß’s moving to the right past the A’s, and the C’s moving to the left with equal 
velocity. Suppose the ß’s have moved one place to the right and the C’s one place to the left, 
so that ß], which was originally under A4, is now under A^, while Cb originally under A$, 
is now under Ä4 (Fig. 2.15). Zeno supposes that the objects are indivisible elements of space 
and that they move to their new positions in an indivisible unit of time. But since there must 
have been a moment at which ß, was directly over Cb there arc two possibilities. Either the 
two objects did not cross, and so there was no motion at all, or in the indivisible instant, each 
object had occupied two separate positions, so that the instant was in fact not indivisible. 
Aristotle believed that he had refuted this paradox because he had already denied the original 
assumption—that time is composed of indivisible instants.

forcing mathematicians to the present day to think carefully about their assumptions in dealing 
with the concepts of the infinite or the infinitely small. And in Greek times they were probably 
a significant factor in the development of the distinction between continuous magnitude and 
discrete number so important to Aristotle and ultimately to Euclid.

EXERCISES

FIGURE 2.15
Zeno’s parardox of the 
Stadium

Interestingly, the four paradoxes exhaust the four possibilities of divisibility/indivisibility 
of space and time. Thal is, in the Arrow both space and time arc assumed infinitely divisible, 
in the Stadium both are assumed ultimately indivisible, in the Dichotomy space is assumed 
divisible and time indivisible, and in the Achilles the reverse is assumed. So Zeno has shown 
each of ihc four possibilities leads to a contradiction.

Controversy regarding these paradoxes has lasted throughout history. The ideas contained 
in Zeno's statements and Aristotle’s attempts at refutation have been extremely fruitful in

1. Represent 125, 62, 4821, and 23,855 in the Greek alpha­
betic notation.

2. Represent 8/9 as a sum of distinct unit fractions. Express 
the result in the Greek notation. Note that the answer to 
this problem is not unique.

3. Represent 200/9 as the sum of an integer and distinct unit 
fractions. Express the result in Greek notation.

4. There are extant Greek land surveys that give measurements 
of fields and then find the area so the land can be assessed 
for tax purposes. In general, areas of quadrilateral fields 
were approximated by multiplying together the averages 
of the two pairs of opposite sides. In one document, one 
pair of sides is given as a = 1/4 + 1/8 + 1/16 + 1/32 and 
c — 1/8+ 1/16, where the lengths are in fractions of a 
schonion, a measure of approximately 150 feet. The second 
pair of sides is given as b = 1/2 + 1/4 + 1/8 and d = 1. 
Find the average of a and c, the average of b and d, and 
multiply them together to show that the area of the field is 
approximately 1/4 +1/16 square schonion. Note that the 
taxman has rounded up the exact answer (presumably to 
collect more taxes).

5. Thales is said to have invented a method of finding distances 
of ships from shore by use of the angle-side-angle theorem. 
Here is a possible method: Suppose A is a point on shore 
and S is a ship (Fig. 2.16). Measure the distance AC along 
a perpendicular to AC and bisect it al B. Draw CE al right 
angles to AC and pick point E on it in a straight line with 
B and S. Show that AE BC = AS BA and therefore that 
SA = EC.

6. A second possibility for Thales' method is the following: 
Suppose Thales was atop a tower on the shore with an 
instrument made of a straight stick and a crosspiece AC 
that could be rotated to any desired angle and then would 
remain where it was pul (Fig. 2.17). One rotates AC until 
one sights the ship S, then turns and sights an object T on 
shore without moving the crosspiece. Show that AAET = 
△ AES and therefore that SE = ET.

FIGURE 2.17
Second method Thales could have used to determine the dis­
tance to a ship at sea

F1GL RIÍ 2.16
One method Thales could have used to determine the distance 
to a ship at sea

7. Suppose Thales found that at the time a stick of length 6 
feet cast a shadow of 9 feet, there was a length of 342 feet 
from the edge of the pyramid’s side to the tip of its shadow. 
Suppose further that the length of a side of the pyramid was 
756 feet. Find the height of the pyramid. (Assuming that the 
pyramid is laid out so the sides arc due north-south and due 
east-west, this method requires that the sun be exactly in 
the south when the measurement is taken. When does this 
occur?20)

8. Show that the /zth triangular number is represented alge­
braically as Tn = ^+22 ancj therefore that an oblong num­
ber is double a triangular number.

9. Show algebraically that any square number is the sum of 
two consecutive triangular numbers.

10. Show using dots that eight times any triangular number plus 
1 makes a square. Conversely, show that any odd square 
diminished by I becomes eight times a triangular number. 
Show these results algebraically as well.

11. Show that in a Pythagorean triple, if one of the terms is odd. 
then two of them must be odd and one even.
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Euclid
FIGURE 3.1
Euclid (detail from Raphael’s 
painting The School of 
Athens). Note that there is 
no evidence of Euclid’s actual 
appearance.

Nol much younger than these [Hermotimus 
of Colophon and Philippus of Mende, 
students of Plato] is Euclid, who pul 
together the Elements, collecting many 
of Eudoxus’s theorems, perfecting many 
of Theaetetus’s, and also bringing to 
irrefragable demonstration the things which 
were only somewhat loosely proved by his 
predecessors. Ihis man lived in the timeoj 
the first Ptolemy.

—Procluss Summary (c. 450 ce) of 
Eudcmus’s History (c. 320 BCE)1

T
wo legends about Euclid: Ptolemy is said to have asked him 
if there was any shorter way to geometry than through the 
Elements, and he replied that there was “no royal road to geo­
metry.” And, according to Stobaeus (fifth century ce), a student, after 

learning the first theorem, asked Euclid, “What shall I get by learning 
these things?” Euclid then asked his slave to give the student a coin, 
“since he must make gain out of what he learns.”2

From Chapter 3 of A History of Mathematics, Third Edition. Victor J. Katz. 
Copyright © 2009 by Pearson Education, Inc. All rights reserved.

Since the first Ptolemy, Ptolemy I Soler, the Macedonian general of Alexander the Great who 
became ruler of Egypt after the death of Alexander in 323 BCE and lived until 283 BCE, it is 
generally assumed from the quotation from Proclus that Euclid flourished around 300 BCE 
(Fig. 3.1). But besides this date, written down some 750 years later, there is nothing at all 
known about the life of the author of the Elements. Nevertheless, most historians believe that 
Euclid was one of the first scholars active at the Museum and Library at Alexandria, founded 
by Ptolemy I and his successor, Ptolemy II Philadelphus. “Museum” here means a “Temple 
of the Muses,” that is, a location where scholars meet and discuss philosophical and literary 
ideas. The Museum was to be, in effect, a government research establishment. The Fellows 
of the Museum received stipends and free board and were exempt from taxation. In this way 
the rulers of Egypt hoped that men of eminence would be attracted there from the entire 
Greek world. In fact, the Museum and Library soon became a focal point of the highest 
developments in Greek scholarship, both in the humanities and the sciences. The Fellows 
were initially appointed to carry on research, but since younger students gathered there as 
well, the Fellows soon turned to leaching. The aim of the Library was to collect the entire 
body of Greek literature in the best available copies and to organize it systematically. Ship 
captains who sailed from Alexandria were instructed to bring back scrolls from every port 
they touched until their return. The story is told that Ptolemy III, who reigned from 247-221 
BCE, borrowed the authorized texts of the playwrights Aeschylus, Sophocles, and Euripides 
from Athens against a large deposit. But rather than return the originals, he returned only 
copies. He was quite willing to forfeit the deposit. The Library ultimately contained over 
500,000 volumes in every field of knowledge. Although parts of the library were destroyed 
in various wars, some of it remained intact until the fourth century ce.

This chapter will be devoted primarily to a study of Euclid’s most important work, the 
Elements, but we will also consider Euclid’s Data.

INTRODUCTION TO THE ELEMENTS
The Elements of Euclid is the most important mathematical text of Greek times and probably 
of all time. It has appeared in more editions than any work other than the Bible. It has been 
translated into countless languages and has been continuously in print in one country or 
another nearly since the beginning of printing. Yet to the modern reader the work is incredibly 
dull. There are no examples; there is no motivation; there are no witty remarks; there is no 
calculation. There arc simply definitions, axioms, theorems, and proofs. Nevertheless, the 
book has been intensively studied. Biographies of many famous mathematicians indicate 
that Euclid’s work provided their initial introduction into mathematics, that it in fact excited 
them and motivated them to become mathematicians. It provided them with a model of how 
“pure mathematics” should be written, with well-thought-out axioms, precise definitions, 
carefully stated theorems, and logically coherent proofs. Although there were earlier versions 
of Elements before that of Euclid, his is the only one to survive, perhaps because it was the 
first one written after both the foundations of proportion theory and the theory of irrationals 
had been developed and the careful distinctions always to be made between number and 
magnitude had been propounded by Aristotle. It was therefore both “complete” and well 
organized. Since the mathematical community as a whole was of limited size, once Euclid's
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work was recognized for its general excellence, there was no reason to keep another inferior 
work in circulation.

Euclid wrote his text about 2300 years ago. There are, however, no copies of the work 
dating from that time. The earliest extant fragments include some potsherds discovered in 
Egypt dating from about 225 bce, on which are written what appear to be notes on two 
propositions from Book XIII, and pieces of papyrus containing parts of Book II dating from 
about 100 bce. Copies of the work were, however, made regularly from the time of Euclid. 
Various editors made emendations, added comments, or put in new lemmas. In particular, 
Theon of Alexandria (fourth century ce) was responsible for one important new edition. Most 
of the extant manuscripts of Euclid’s Elements are copies of this edition. The earliest such 
copy now in existence is in the Bodleian Library at Oxford University and dates from 888. 
There is, however, one manuscript in the Vatican Library, dating from the tenth century, which 
is not a copy of Theon’s edition but of an earlier version. Il was from a detailed comparison of 
this manuscript with several old manuscript copies of Theon’s version that the Danish scholar 
J. L. Heiberg compiled a definitive Greek version in the 1880s, as close to what he believed 
the Greek original was as possible. The extracts to be discussed here are all adapted from 
Thomas Heath’s 1908 English translation of Heiberg’s Greek. (It should be noted that some 
modern scholars believe that one can get closer to Euclid’s original by taking more account 
of medieval Arab translations than Heiberg was able to do.)

Euclid’s Elements is a work in thirteen books. The first six books form a relatively 
complete treatment of two-dimensional geometric magnitudes while Books VII-IX deal 
with the theory of numbers, in keeping with Aristotle’s instructions to separate the study of 
magnitude and number. In fact, Euclid included two entirely separate treatments of proportion 
theory—in Book V for magnitudes and in Book VII for numbers. Book X then provides 
the link between the two concepts, because it is here that Euclid introduced the notions 
of commensurability and incommensurability and showed that, with regard to proportions, 
commensurable magnitudes may be treated as if they were numbers. The book continues 
by presenting a classification of some incommensurable magnitudes. Euclid next dealt in 
Book XI with three-dimensional geometric objects and in Book XII with the method of 
exhaustion applied both to two- and three-dimensional objects. Finally, in Book XIII he 
constructed the five regular polyhedra and classified some of the lines involved according 
to his scheme of Book X.

It is useful to note that much of the ancient mathematics discussed in Chapter 1 is in­
cluded in one form or another in Euclid’s masterwork, with the exception of actual methods 
of arithmetic computation. The methodology, however, is entirely different. Namely, mathe­
matics in earlier cultures always involves numbers and measurement. Numerical algorithms 
for solving various problems are prominent. The mathematics of Euclid, however, is com­
pletely nonarithmetical. There are no numbers used in the entire work aside from a few small 
positive integers. There is also no measurement. Various geometrical objects are compared, 
but not by use of numerical measures. There are no cubits or acres or degrees. The only 
measurement standard—for angles—is the right angle. Nevertheless, the question must be 
asked as to how much influence the mathematical cultures of Egypt and Mesopotamia had on 
Euclidean mathematics. In this chapter we discuss certain pieces of evidence in this regard, 
but a complete answer to this question cannot yet be given.

3.2 Book I and hie Py i ha<.orean I'heorem

sidebar 3.1 Euclid’s Postulates and Common Notions

Postulates
1. To draw a straight line from any point to any point.
2. To produce a finite straight line continuously in a straight 

line.
3. To describe a circle with any center and distance.
4. That all right angles are equal to one another.
5. That, if a straight line intersecting two straight lines make 

the interior angles on the same side less than two right 
angles, the two straight lines, if produced indefinitely, 
meet on that side on which the angles are less than two 
right angles.

Common Notions (Axioms)
l. Things which are equal to the same thing are also equal 

to one another.
2. If equals are added to equals, the wholes are equal.
3. If equals are subtracted from equals, the remainders are 

equal.
4. Things which coincide with one another are equal to one 

another.
5. The whole is greater than the part.

BOOK I AND THE PYTHAGOREAN THEOREM
As Aristotle suggested, a scientific work needs to begin with definitions and axioms. Euclid 
therefore prefaced several of the thirteen books with definitions of the mathematical objects 
discussed, most of which arc relatively standard. He also prefaced Book I with ten axioms; 
five of them are geometrical postulates and five are more general truths about mathematics 
called “common notions.” Euclid then proceeded to prove one result after another, each one 
based on the previous results and/or the axioms. If one reads Book I from the beginning, one 
never has any idea what will come next. It is only when one gets to the end of the book, where 
Euclid proved the Pythagorean I’heorem, that one realizes that Book I’s basic purpose is to 
lead to the proof of that result. Thus, in order to understand the reasons for various theorems, 
we begin our discussion of Book I with the Pythagorean Theorem and work backwards. This 
also enables us to see why certain unproved results must be assumed, namely, the axioms. 
Sidebar 3.1 does, however, list all of Euclid’s axioms (called “postulates” and “common 
notions”) and Sidebar 3.2 has selected definitions.

As we discuss the various propositions, the reader should keep in mind a few important 
issues. First, although Euclid has modeled the overall structure of the Elements using some 
of Aristotle’s ideas, he did not use syllogisms in his proofs. His proofs were written out in 
natural language and generally used the notions of propositional logic. In fact, one can find 
examples of all four of the basic rules of inference among Euclid’s proofs. Next, Euclid 
always assumed that if he proved a result for a particular configuration representing the 
hypotheses of the theorem and illustrated in a diagram, he had proved the result generally. 
For example, as we will see, he proved the Pythagorean Theorem by drawing some lines 
and marking some points on a particular right triangle, then arguing to his result on that 
triangle, and then concluding that the result is true for any right triangle. Of course, when 
mathematicians today use that strategy, they base it on explicit ideas of mathematical logic. 
Euclid, in contrast, never discussed his philosophy of proof; he just went ahead and proved
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Archimedes and
Apollonius

Th third book fof Conics/ contains 
many incredible theorems of use /or the 
construction oj solid loci and for limits o] 
possibility of which the greatest pari and the 
most beautiful are new. And when uv had 
grasped these, we knew that the threedine 
and /ourlinc locus had not been constructed 
by Euclid, but only a chance part of it and 
that not very happily. Ebr it was not possible 
for this construction to be completed without 
the additional things found by us.

—I’refocc to Book I of 
Apollonius's Conics’

H
ere is a story told by Vitruvius: “It is no surprise that Hiero 
[the king of Syracuse in the third century bce], after he 
had obtained immense kingly power in Syracuse, decided, 
because of the favorable turn of events, to dedicate a votive crown of 

gold to the immortal gods in a certain shrine. He contracted for the 
craftsman’s wages, and he [himself] weighed out the gold precisely for 
the contractor. This contractor completed the work with great skill 
and on schedule; it was approved by the king, and the contractor 
seemed to have used up the furnished supply of gold. Later, charges 
were leveled that in the making of the crown a certain amount of gold 
had been removed and replaced by an equal amount of silver. Hiero, 
outraged that he should have been shown so little respect, and not 
knowing by what method he might expose the theft, requested that 
Archimedes take the matter under consideration on his behalf Now
Archimedes, once he had charge of this matter, chanced to go to the 
baths, and there, as he stepped into the tub, he noticed that however 
much he immersed his body in it, that much water spilled over the 
sides of the tub. When the reason for this occurence came clear to 
him, he did not hesitate, but in a transport of joy he leapt out of 
the tub, and as he rushed home naked, he let one and all know that 
he had truly found what he had been looking for—because as he ran 
he shouted over and over in Greek: ‘I found it! I found it! [Eureka! 
Eureka!]’ "2
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Greek mathematics in the third and early second centuries bce was dominated by two major 
figures, Archimedes of Syracuse (c. 287-212 bce) and Apollonius of Perga (c. 250-175 bce), 
each heir to a different aspect of fourth-century Greek mathematics. The former took over 
the “limit" methods of Eudoxus and succeeded not only in applying them to determine areas 
and volumes of new figures, but also in developing new techniques that enabled the results to 
be discovered in the first place. Archimedes, unlike his predecessors, was neither reluctant to 
share his methods of discovery nor afraid of performing numerical calculations and exhibiting 
numerical results. And also, unlike Euclid, he did not write systematic treatises on a major 
subject, but instead what may be considered research monographs, treatises concentrating 
on the solution of a particular set of problems. These treatises were often sent originally as 
letters to mathematicians Archimedes knew, so many of them include prefaces describing the 
circumstances and purposes of their writing. Furthermore, several of the treatises presented 
mathematical models of certain aspects of what we would call theoretical physics and applied 
his physical principles to the invention of various mechanical devices.

Apollonius, on the other hand, was instrumental in extending the domain of analysis to 
new and more difficult geometric construction problems. As a foundation for these new 
approaches, he created his magnum opus, the Conics, a work in eight books developing 
synthetically the important properties of this class of curves, properties that were central in 
developing new solutions to such problems as the duplication of the cube and the trisection 
of the angle.

As is the case for Euclid, there arc no surviving manuscripts of the works of either Archi­
medes or Apollonius dating from anywhere near their time of composition. For Archimedes, 
we know that an edition of some of his works with extensive commentaries was prepared by 
Eutocius early in the sixth century somewhere near Byzantium. This edition was the basis 
for some part of the three collections of Archimedes’ works, written on parchment, that were 
available in Byzantium in the tenth or eleventh century. Only one of these is still extant and 
will be discussed in some detail below. The second oldest extant Archimedes manuscript is 
a 1260 Latin translation by Moerbeke, probably made from both of the two now missing 
Byzantine copies, but such a literal translation that from it we can practically re-create the 
Greek text. There are also several fifteenth- and sixteenth-century Greek copies of the miss­
ing Byzantine versions. Heiberg collated these manuscripts in the late nineteenth century and 
produced the now standard Greek text of Archimedes in 1880-81, with a revised version in 
1910-15. Similarly, Eutocius prepared an edition of the first four books of Apollonius’s Con­
ics of which the Greek manuscripts available in tenth-century Byzantium were copies. The 
earliest surviving Greek manuscript was copied there in the twelfth or thirteenth century. But 
there are two older Arabic manuscripts of seven books of the Conics, one written in Egypt in 
the early eleventh century and now in Istanbul, and one written in Maragha toward the end 
of that century and now in Oxford. Again, Heiberg produced a definitive Greek edition of 
Books I-IV in 1891-93, while a definitive Arabic edition of Books V-VII was only produced 
in 1990 by Toomer.

This chapter surveys the extant works of both of these mathematicians, as well as the work 
of certain others who considered similar problems.

FIGURE 41
Archimedes and the law of the 
lever

ARCHIMEDES AND PHYSICS
Archimedes was the first mathematician to derive quantitative results from the creation of 
mathematical models of physical problems on earth. In particular, Archimedes is responsible 
for the first proof of the law of the lever (Fig. 4.1) and its application to finding centers of 
gravity, as well as the first proof of the basic principle of hydrostatics and someof its important 
applications.

4.1.1 The Law of the Lever
Everyone is familiar with the principle of the lever from having played on seesaws as children. 
Equal weights at equal distances from the fulcrum of the lever balance, and a lighter child 
can balance a heavier one by being farther away. The ancients were aware of this principle as 
well. The law even appears in writing in a work on mechanics attributed to Aristotle: “Since 
the greater radius is moved more quickly than the less by an equal weight, and there are three 
elements in the lever, the fulcrum . . . and two weights, that which moves and that which is 
moved, therefore the ratio of the weight moved to the moving weight is the inverse ratio of 
their distances from the fulcrum.”3

As far as is known, no one before Archimedes had created a mathematical model of the 
lever by which one could derive a mathematical proof of the law of the lever. In general, 
a difficulty in attempting to apply mathematics to physical problems is that the physical 
situation is often quite complicated. Therefore, the situation needs to be idealized. One 
ignores those aspects that appear less important and concentrates on only the essential 
variables of the physical problem. This idealization is referred to today as the creation of 
a mathematical model. The lever is a case in point. To deal with it as it actually occurs, one 
would need to consider not only the weights applied to the two ends and their distances from 
the fulcrum, but also the weight and composition of the lever itself. It may be heavier at one 
end than the other. Its thickness may vary. It may bend slightly—or even break—when certain 
weights arc applied at certain points. In addition, the fulcrum is also a physical object of a 
certain size. The lever may slip somewhat along the fulcrum, so it may not be clear from 
what point the distance of the weights should be measured. To include all of these factors 
in a mathematical analysis of the lever would make the mathematics extremely difficult. 
Archimedes therefore simplified the physical situation. He assumed that the lever itself was 
rigid, but weightless, and that the fulcrum and the weights were mathematical points. He was 
then able to develop the mathematical principles of the lever.

Archimedes dealt with these principles at the beginning of his treatise Planes in Equilib­
rium. Being well trained in Greek geometry, he began by stating seven postulates he would 
assume, four of which are reproduced here.

I. Equal weights at equal distances arc in equilibrium, and equal weights at unequal 
distances are not in equilibrium but incline toward the weight that is al the greater 
distance.

2. If, when weights at certain distances arc in equilibrium, something is added to one of the 
weights, they are not in equilibrium but incline toward the weight to which the addition 
was made.
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Archimedes (287-212 BCE)

More biographical information about Archimedes sur­
vives than about any other Greek mathematician. Much 

is found in Plutarch's biography of the Roman general Mar­
cellus, who captured Syracuse, the major city of Sicily, after 
a siege in 212 bce during the Second Punic War. Other Greek 
and Roman historians also discuss aspects of Archimedes’ life.

Archimedes was the son of the astronomer Phidias and per­
haps a relative of King Hiero II of Syracuse, under whose rule 
from 270 to 216 bce the city greatly nourished. It is also prob­
able that Archimedes spent time in his youth in Alexandria, for 
he is credited with the invention there of what is known as the 
Archimedean screw, a machine for raising water used tor irri­
gation (Fig. 4.2). Moreover, the prefaces of many of his works 
arc addressed to scholars at Alexandria, including one of the 
chief librarians. Eratosthenes. Most of his life, however, was 
spent in his native Syracuse, where he was repeatedly called 
upon to use his mathematical talents to solve various prac­
tical problems for Hiero and his successor. Many stories are 
recorded about his intense dedication to his work. Plutarch, in 
The Lives of the Noble Grecians and Romans (Great Books, 14. 
Dryden translation), wrote that on many occasions his concen­

tration on mathematics “made him forget his food and neglect 
his person, to that degree that when he was carried by absolute 
violence to bathe or have his body anointed, he used to trace 
geometrical figures in the ashes of the fire, and diagrams in the 
oil on his body, being in a state of entire preoccupation, and 
in the truest sense, divine possession with his love and delight 
in science” (p. 254). And it was this dedication that ultimately 
cost him his life.

His genius as a military engineer kept the Roman army under 
Marcellus at bay for months during the siege of Syracuse. Fi­
nally, however, probably through treachery, the Romans were 
able to enter the city. Marcellus gave explicit orders that Archi­
medes be spared, but Plutarch relates that, “as fate would have 
it. he was intent on working out some problem with a diagram 
and, having fixed his mind and his eyes alike on his investi­
gation, he never noticed the incursion of the Romans nor the 
capture of the city. And when a soldier came up to him suddenly 
and bade him follow to Marcellus, he refused to do so until he 
had worked out his problem to a demonstration; whereat the 
soldier was so enraged that he drew his sword and slew him” 
(Lives, p. 252).

Although Archimedes used the term “center of gravity” in many of the book’s propositions, 
he never gave a definition. Presumably, he felt that the concept was so well known to his 
readers that a definition was unnecessary. There arc, however, later Greek texts that do give 
a definition, perhaps the one that was even used in Archimedes’ time: “We say that the 
center of gravity of any body is a point within that body which is such that, if the body 
be conceived to be suspended from that point, the weight carried thereby remains at rest and 
preserves the original position.”4 But it was also clear to Archimedes, and this is what he 
expressed in postulate 6, that the downward tendency of gravitation may be thought of as 
being concentrated in that one point. Note that in neither the postulates nor the theorems 
is there any mention of the lever itself. It is just there. Its weight docs not enter into the 
calculations. Archimedes in effect assumed that the lever is weightless and rigid. Its only 
motion is inclination to one side or the other.

The first two in Archimedes’ sequence of propositions leading to the law of the lever are 
very easy:

PROPOSITION 1 Weights which balance at equal distances are equal.

PROPOSITION 2 Unequal weights at equal distances will not balance but will incline 
toward the greater weight.

The proof of the first result is by reductio ad absurdum. For if the weights are not equal, 
take away from the greater the difference between the two. By postulate 3, the remainders will 
not balance. This contradicts postulate 1, since now we have equal weights at equal distances. 
Our original assumption must then be false. To prove Proposition 2, again take away from the 
greater weight the difference between the two. By postulate I, the remainders will balance. 
So if this difference is added back, the lever will incline toward the greater by postulate 2.

PROPOSITION 3 Suppose A and B are unequal weights with A > B which balance at point 
C ( Fig. 4.3). Let AC = a, BC = b. Then a < b. Conversely, if the weights balance and a < b, 
then A > B.

FIGURE 4.2
Archimedes and the Archime­
dean screw

3. Similarly, if anything is taken away from one of the weights, they are not in equilibrium 
but incline toward the weight from which nothing was taken.

6. If magnitudes at certain distances are in equilibrium, other magnitudes equal to them 
will also be in equilibrium at the same distances.

These postulates come from basic experience with levers. The first postulate, in fact, is an 
example of what is usually called the Principle of Insufficient Reason. That is, one assumes 
that equal weights at equal distances balance because there is no reason to make any other 
assumption. The lever cannot incline to the right, for example, since what is the right side 
from one viewpoint is the left side from another. The second and third postulates arc equally 
obvious. The sixth appears to be virtually meaningless. In Archimedes’ use of it, however, 
it appears that the second clause means “other equal magnitudes, the centers of gravity ol 
which lie at the same distances from the fulcrum, will also be in equilibrium.” That is, the 
influence of a magnitude on the lever depends solely on its weight and the position of its 
center of gravity.

FIGUR F 4.3
Planes in Equilibrium, 
Proposition 3

The proof is again by contradiction. Supposer? b. Subtract from A the difference A — B. 
By postulate 3, the lever will incline toward B. But if a = b, the equal remainders will balance, 
and if a > b, the lever will incline toward A by postulate I. These two contradictions imply 
that a < b. The proof of the converse is equally simple.

In Propositions 4 and 5, Archimedes showed that the center of gravity of a system of two 
(and three) equally spaced equal weights is at the geometric center of the system. These results 
arc extended in the corollaries to any system of equally spaced weights provided that those at 
equal distance from the center are equal. The law of the lever itself is staled in Propositions 
6 and 7:

PROPOSITION 6, 7 Two magnitudes, whether commensurable [Proposition 6] or incom­
mensurable [Proposition 7], balance at distances inversely proportional to the magnitudes.
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First assume that the magnitudes A, ß, are commensurable; that is, A : B — r : s, where 
r, s, are numbers. Archimedes’ claim is that if A is placed at E and B at D, and if C is 
taken on DE with DC : CE = r : 5, then C is the center of gravity of the two magnitudes 
A, B (Fig. 4.4). To prove the result, assume that units have been chosen so that DC = r and 
CE = s. Choose H on DE so that HE = r and extend the line past E to L so that EL also 
equals r. Also extend the line in the opposite direction to K, making DK = HD = s.l hen C 
is the midpoint of LK. Now break A into 2r equal parts and B into 2s equal pails. Space the 
first set equally along LH and the second along HK. Since A : B = r : 5 = 2r : 2s, it follows 
that each part of A is equal to each part of B. From the corollary mentioned above, the center 
of gravity of the parts of A will be at the midpoint E of H L, while the center of gravity of the 
parts of B will be at the midpoint D of K H. By postulate 6, nothing is changed if A itself is 
considered situated at E and B at D. On the other hand, the total system consists of 2r + 2s 
equal parts equally spaced along the line KL. Hence, the center of gravity of the system is 
at the midpoint C of that line. Therefore, weight A placed at E and weight B placed at D 
balance about the point C.

FIGURE 4.4
Planes in Equilibrium, 
Proposition 6
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Archimedes concluded the proof in the incommensurable case by a reductio argument 
using the fact that if two magnitudes are incommensurable, one can subtract from the first 
an amount smaller than any given quantity such that the remainder is commensurable with 
the second. Interestingly enough, Archimedes made no use here of the Eudoxian proportion 
theory for incommensurables of Elements, Book V, nor even of Theaetetus’s earlier version 
based on the Euclidean algorithm. He instead made use essentially of a continuity argument. 
But even so, his proof is somewhat flawed.

Nevertheless, Archimedes used the law of the lever in the remainder of the treatise to find 
the centers of gravity of various geometrical figures. He proved that the center of gravity of 
a parallelogram is at the intersection of its diagonals, of a triangle at the intersection of two 
medians, and of a parabolic segment at a point on the diameter three-fifths of the distance 
from the vertex to the base.

4.1.2 Applications to Engineering
Not only are there geometric consequences of the law of the lever, but there are also physical 
consequences. In particular, given any two weights A and B and any lever, there is always a 
point C at which the weights balance. If A is much heavier than B, they will balance when A 
is sufficiently close to C and B is sufficiently far away. But then any additional weight added 
to B will incline the lever in that direction and will cause weight A to be lilted. Archimedes 
therefore was able to boast that “any weight might be moved and .. . if there were another 
earth, by going into it he could move this one.”5 When King Hiero heard of this boast, he 
asked Archimedes to demonstrate his principles in actual experiment. Archimedes complied, 
but instead of using a lever, he probably made use of some kind of pulley or tackle system,
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which also provided a great mechanical advantage. Plutarch wrote that “he fixed accordingly 
upon a ship of burden out of the king’s arsenal, which could not be drawn out of the dock 
without great labor and many men; and loading her with many passengers and a full freight, 
sitting himself the while far off, with no great endeavor, but only holding the head of the 
pulley in his hand and drawing the cords by degrees, he drew the ship in a straight line, as 
smoothly and evenly as if she had been in the sea.”6 Other sources give a variant of Plutarch’s 
story, to the effect that Archimedes was responsible for the construction of a magnificent 
ship, named the Syracuse!, and singlehandedly launched this 4200-ton luxury vessel.

Archimedes enjoyed the greatest fame in antiquity, however, for his design of various 
engines of war. These engines enabled Syracuse to hold off the Roman siege for many months. 
Archimedes devised various missile launchers as well as huge cranes by which he was able 
to lift Roman ships out of the water and dash them against the rocks or simply dump out the 
crew. In fact, he was so successful that any time the Romans saw a little rope or piece of wood 
come out from the walls of the city, they fled in panic.

Plutarch related that Archimedes was not particularly happy as an engineer: “He would not 
deign to leave behind him any commentary or writing on such subjects; but, repudiating as 
sordid and ignoble the whole trade of engineering, and every sort of art that lends itself to mere 
use and profit, he placed his whole affection and ambition in those purer speculations where 
there can be no reference to the vulgar needs of life.”7 In fact, however, there is evidence that 
Archimedes did write on certain mechanical subjects, including a book On Sphere Making 
in which he described his planetarium, a mechanical model of the motions of the heavenly 
bodies, and another one on water clocks.

The incident of the gold crown and the bath led Archimedes to the study of an entirely new 
subject, that of hydrostatics, in which he discovered its basic law, that a solid heavier than 
a fluid will, when weighed in the fluid, be lighter than its true weight by the weight of the 
fluid displaced. It is, however, not entirely clear how Archimedes’ noticing the water being 
displaced in his bath led him to the concept of weight being lessened. Perhaps he also noticed 
that his body felt lighter in the water.

As in his study of levers, Archimedes began the mathematical development of hydrostatics, 
in his treatise On Floating Bodies, by giving a simplifying postulate. He was then able to show, 
among other results, that the surface of any fluid at rest is the surface of a sphere whose center 
is the same as that of the earth. He could then deal with solids floating or sinking in fluids by 
assuming that the fluid was part of a sphere. Archimedes was able to solve the crown problem 
by using the basic law, proved as Proposition 7. One way by which he could have applied 
the law is suggested by Heath, based on a description in a Latin poem of the fifth century 
CE.8 Suppose the crown is of weight W, composed of unknown weights uq and w2 of gold 
and silver, respectively. To determine the ratio of gold to silver in the crown, first weigh it in 
water and let F be the loss of weight. This amount can be determined by weighing the water 
displaced. Next take a weight W of pure gold and let F} be its weight loss in water. It follows 
that the weight of water displaced by a weight w, of gold is Similarly, if the weight 
of water displaced by a weight W of pure silver is F2, the weight of water displaced by a 
weight w2 of silver is ^F2. Therefore, ^F] 4- yfi F2 = F. Thus, the ratio of gold to silver 
is given by

uq _ F — F2 
ir? F) — F
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Euclidean pointwise construc­
tion of a parabola BIOGRAPHY

Apollonius (250-175 ñCE)

Apollonius was bom in Perga, a town in southern Asia Mi­
nor, but few details are known about his life. Most of 

the reliable information comes from the prefaces to the vari­
ous books of his magnum opus, the Conics (Fig. 4.16). These 
indicate that he went to Alexandria as a youth to study with 
successors of Euclid and probably remained there for most of 
his life, studying, teaching, and writing. He became famous in 
ancient times first for his work on astronomy, but later for his 
mathematical work, most of which is known today only by

connected, the desired curve is drawn.16 We note that although each point of this curve has 
been constructed using Euclidean tools, the completed curve is not a proper construction in 
Euclid’s sense. In any case, it does appear that the conic sections were introduced as tools 
for the solution of certain geometric problems.

There can be only speculation as to how the Greeks realized that curves useful in solving 
the cube doubling problem could be generated as sections of a cone. Someone, perhaps 
Menaechmus himself, may have noticed that the circle diagram above could be thought of 
as a diagram of level curves of a certain cone, hence that the curve could be generated by a 
section of such a cone. Another possibility is that these curves appeared as the path of the 
moving shadow of the gnomon on a sundial as the sun traveled through its circular daily path, 
which in turn was one base of a double cone whose vertex was the tip of the gnomon. In this 
suggestion, the plane in which the shadow falls would be the cutting plane. It might further 
have been noted that the apparent shape of a circle viewed from a point outside its plane was 
an ellipse, and this shape comes from a plane cutting the cone of vision. In any case, by the 
end of the fourth century, there were in existence two extensive treatises on the properties of 
the curves obtained as sections of cones, one by Aristaeus (fourth century bce) and one by 
Euclid. Although neither is still available, a good deal about their contents can be inferred 
from Archimedes’ extensive references to basic theorems on conic sections.

Recall that Euclid (in Book XI of the Elements) defined a cone as a solid generated by 
rotating a right triangle about one of its legs. He then classified the cones in terms of their 
vertex angles as right angled, acute angled, or obtuse angled. A section of such a cone can be 
formed by cutting the cone by a plane at right angles to the generating line, the hypotenuse 
of the given right triangle. The “section of a right-angled cone” is today called a parabola, 
the “section of an acute-angled cone” an ellipse, and the “section of an obtuse-angled cone” 
a hyperbola. The names in quotation marks are those generally used by Archimedes and his 
predecessors.

FIGUR I 4.16
Title page of the first Latin 
printed edition of Apollo­
nius’s Conics, 1566 (Source: 
Smithsonian Institution Li­
braries, Photo No. 86-4346)

titles and summaries in works of later authors. Fortunately, 
seven of the eight books of the Conics do survive, and these 
represent in some sense the culmination of Greek mathemat­
ics. It is difficult for us today to comprehend how Apollonius 
could discover and prove the hundreds of beautiful and difficult 
theorems without modern algebraic symbolism. Nevertheless, 
he did so. and there is no record of any later Greek mathemat­
ical work that approaches the complexity or intricacy of the 
Conics.
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