Holdet 2022 MA/y - Undervisningsbeskrivelse

Undervisningsbeskrivelse

Stamoplysninger til brug ved prøver til gymnasiale uddannelser
Termin(er) 2022/23 - 2024/25
Institution Viborg Katedralskole
Fag og niveau Matematik A
Lærer(e) Lene Møller Pedersen
Hold 2022 MA/y (1y MA, 2y MA, 3y MA)
Oversigt over gennemførte undervisningsforløb
Titel 1 Retvinklede trekanter
Titel 2 Vektorer del 1
Titel 3 Intro af eksponentiel vækst før FF forløb
Titel 4 Eksponentielle-, logartime- og potensfunktioner
Titel 5 Polynomier
Titel 6 Opsparrings- og gældsannuitet
Titel 7 Deskriptiv statistik
Titel 8 Optimering med andengradspolynomier
Titel 9 Differentialregning
Titel 10 Numerisk integration
Titel 11 Harmoniske svingninger
Titel 12 Vektorer og analytisk geometri
Titel 13 Optimering
Titel 14 Sandsynlighedsregning og statistik
Titel 15 Genbesøg fra Pescia
Titel 16 Integralregning
Titel 17 Ekskursion til København matematik, idræt og dansk
Titel 18 Differentialregningens historie
Titel 19 Differentialligninger
Titel 20 Vektorfunktioner
Titel 21 Funktioner i to variable
Titel 22 Sandsynlighedsregning og statistik del 2
Titel 23 Forberedelses materiale 2025 sandsynlighedsregning
Titel 24 Træning i opgaveregning og mundtlig fremstilling

Beskrivelse af de enkelte undervisningsforløb (1 skema for hvert forløb)
Titel 1 Retvinklede trekanter

Ensvinklede trekanter
Enhedscirklen og definition af sinus, cosinus og tangens.
Sinus, cosinus og tangens i retvinklet trekant med beviser.

Kort introforløb med klasseundervisning og pararbejde.
Indhold
Kernestof:
Omfang Estimeret: Ikke angivet
Dækker over: 6 moduler
Særlige fokuspunkter
Væsentligste arbejdsformer
Titel 2 Vektorer del 1

Vektor begrebet som er indført i grundforløbet repeteres
Skalarprodukt defineres og det vises at skalarproduktet er uafhængigt af koordinatsystemets placering.
Vinkel medlem vektorer med bevis.
Indhold
Kernestof:
Omfang Estimeret: Ikke angivet
Dækker over: 5 moduler
Særlige fokuspunkter
Væsentligste arbejdsformer
Titel 3 Intro af eksponentiel vækst før FF forløb

Regning med procenter og kapitalfremskrivning
eksponentiel funktion defineres og grafens egenskaber undersøges med induktiv tilgang.
Fordoblings- og halveringskonstant defineres
Fællesfagligt forløb med fysik om afkølingskurver.
Brøk og potensregneregler
Omskrivning mellem rødder og rationale potenser
Indhold
Kernestof:
Omfang Estimeret: Ikke angivet
Dækker over: 4 moduler
Særlige fokuspunkter
Væsentligste arbejdsformer
Titel 4 Eksponentielle-, logartime- og potensfunktioner

Funktionsbegrebet og de 4 repræsentationsformer
Definitionsmængde og værdimængde
Intervaller
Omvendt funktion
10-tals logaritmen
logaritmeregneregler med bevis
Den naturlige logaritme
To-punktsformlen for eksponentiel vækst med bevis
Formler for fordoblingskonstant med bevis
Egenskaber ved forskellige væksttyper
Modellering med forskellige typer af vækstfunktioner og regression
Indhold
Kernestof:
Omfang Estimeret: Ikke angivet
Dækker over: 18 moduler
Særlige fokuspunkter
Væsentligste arbejdsformer
Titel 5 Polynomier

Grundlæggende regneteknik
Kvadratsætninger med bevis
Ligningsløsning herunder nulreglen
Løsning af andengradsligning med bevis
Induktiv tilgang til koefficienternes betydning for andengradspolynomiets graf
Parablens symmetriegenskaber med bevis
Parablens toppunkt
Faktorisering af andengradspolynomium med bevis
Induktiv tilgang til grafer for polynomier af højere grad
Andengradsregression
Indhold
Kernestof:
Omfang Estimeret: Ikke angivet
Dækker over: 17 moduler
Særlige fokuspunkter
Væsentligste arbejdsformer
Titel 6 Opsparrings- og gældsannuitet

Formlerne bevises
Gruppearbejde om praktisk anvendelse af gældsannuitet
Indhold


Supplerende stof:
Omfang Estimeret: Ikke angivet
Dækker over: 3 moduler
Særlige fokuspunkter
Væsentligste arbejdsformer
Titel 7 Deskriptiv statistik

størstedelen af forløbet har været et gruppearbejde med indbyggede stopprøver.
Statistiske deskriptorer for ugrupperet observationssæt som typetal, størrelse, variationsbredde, kvartilsæt, boksplot og middelværdi.
Statistiske deksriptorer for grupperet observationssæt som typeinterval, middelværdi, sumkurve og kvartilsæt.
Stykkevis lineær funktion med sumkurve som eksempel
Indekstal
Indhold
Kernestof:
Omfang Estimeret: Ikke angivet
Dækker over: 11 moduler
Særlige fokuspunkter
Væsentligste arbejdsformer
Titel 8 Optimering med andengradspolynomier

Gruppearbejde
Indhold
Omfang Estimeret: Ikke angivet
Dækker over: 2 moduler
Særlige fokuspunkter
Væsentligste arbejdsformer
Titel 9 Differentialregning

Sammenhængen mellem tangentens hældningskoefficient og differentialkvotient introduceres induktivt med brug af Nspires grafværktøj.
Præsentation af regneregler for funktioner og introduktion til til begreberne kontinuitet og grænseværdi behandles som klasseundervisning afvekslende med opgaveregning.
Deduktiv behandling af differentialregning startende med definition af differentialkvotient som græseværdi for differenskvotient.
Differentialkvotienter for x^2, ax+b, kvadratrod x og 1/x behandles med bevis.
Differentiation af k*f(x), f(x)+g(x) og produktfunktion behandles med bevis.
Sammenhæng mellem differentiabilitet og kontinuitet omtales og differentiation af sammensat funktion behandles uden bevis.
Med udgangspunkt i at ln(x) er differentiabel med afledet funktion 1/x findes differentialkvotienter for e^x, e^kx og a^x.
Sammenhæng mellem differentialkvotient og monotoniforhold herunder monotonisætningen uden bevis.
Ekstremum og marginalbetragtninger omtales
Indhold
Kernestof:
Omfang Estimeret: Ikke angivet
Dækker over: 29 moduler
Særlige fokuspunkter
Væsentligste arbejdsformer
Titel 10 Numerisk integration

Som forberedels til udveksling med Pescia og til SRO med fysik og matematik er numerisk integration behandlet.
På togturen foretages accelerationsmålinger, som behandles ved hjælp af numerisk integration til at beregne den tilbagelagt strækning
Indhold


Supplerende stof:
Omfang Estimeret: Ikke angivet
Dækker over: 13 moduler
Særlige fokuspunkter
Væsentligste arbejdsformer
Titel 11 Harmoniske svingninger

Definition af radianer, sinus, cosinus og tangens som funktioner.
Overgangsformler
Harmoniske svingninger behandles induktivt med brug af Nspires grafværktøj
Indhold
Kernestof:
Omfang Estimeret: Ikke angivet
Dækker over: 6 moduler
Særlige fokuspunkter
Væsentligste arbejdsformer
Titel 12 Vektorer og analytisk geometri

Indledes med at repetere vektorbegreberne skalarprodukt samt tværvektor og determinant.
Indfører parameterfremstilling for linje, linjens ligning.
Projektion af vektor på vektor og afstand fra punkt til linje behandles med bevis.
Skæring mellem linjer, cirklens ligning, tangent til cirkel og skæring mellem linje og cirkel behandles.
Indhold
Kernestof:
Omfang Estimeret: Ikke angivet
Dækker over: 14 moduler
Særlige fokuspunkter
Væsentligste arbejdsformer
Titel 13 Optimering

Projekt om optimering af popcornbæger
Indhold
Kernestof:
Omfang Estimeret: Ikke angivet
Dækker over: 4 moduler
Særlige fokuspunkter
Væsentligste arbejdsformer
Titel 14 Sandsynlighedsregning og statistik

Grundlæggende mængdelære læses på engelsk og bearbejdes i grupper med læreren som konsulent.
Materiale: Haese,M m.fl: Cambridge IGSCE International Mathematics (0607) 2nd. ed.  kopi af side 87-93.
Introduktion til permutationer, kombinationer, formel for K(n,r) med bevis. Pascals trekant med bevis.
Sandsynlighedsfelt, symmetrisk sandsynlighedsfelt, hændelse, uafhængige hændelser, stokastisk varriabel, middelværdi, varians og spredning defineres.
Bernoulli forsøg defineres. Sætning om binomialsandsynlighed bevises. Middelværdi for binomialfordeling med bevis, spredning omtales.
Binomialtest og konfidensinterval for andel p behandles.
Indhold
Kernestof:
Omfang Estimeret: Ikke angivet
Dækker over: 26 moduler
Særlige fokuspunkter
Væsentligste arbejdsformer
Titel 15 Genbesøg fra Pescia

Lidt om talsystem og regnemetoder i det gamle Egypten.
Besøg på Moesgaard museum
Indhold
Omfang Estimeret: Ikke angivet
Dækker over: 4 moduler
Særlige fokuspunkter
Væsentligste arbejdsformer
Titel 16 Integralregning

Indledes med repetition af differentialregning
Stamfunktion defineres og analysens fundamental sætning omtales.
Ubestemt integrale defineres og regneregler for ubestemt integrale bevises.
Det bestemte integrale indføres og regneregler for bestemt integrale bevisea.
At arealfunktionen er en stamfunktion til f vises og der er arbejdet med areal af område mellem to grafer.
Volumen af omdrejningslegeme med bevis er behandlet som gruppearbejde.
Formel for kurvelængde er gennemgået med bevis.
Integration ved substitution er gennemgået med eksempler og opgaveregning.

Udover Lærebog i Matematik A3 STX er følgende andvendt:
Carstensen, Jens m.fl. MAT A3 2.udg, Systime 2019 side 26-29
Indhold
Kernestof:
Omfang Estimeret: Ikke angivet
Dækker over: 25 moduler
Særlige fokuspunkter
Væsentligste arbejdsformer
Titel 17 Ekskursion til København matematik, idræt og dansk

Besøg i Tivoli med målinger på diverse forlystelser til brug i grupppearbejde under forløbet Vektorfunktioner.
Besøg i Rundetårn med opmålinger til brug i forløbet Vektorfunktioner.
Foredrag og differential- og integralregningens historie ved Jesper Lützen.
Indhold
Omfang Estimeret: Ikke angivet
Dækker over: 6 moduler
Særlige fokuspunkter
Væsentligste arbejdsformer
Titel 18 Differentialregningens historie

Indledt under ekskursion til København med foredrag ved Jesper Lützen med titlen: Differential- og integralregningens historie.
Matrixgruppearbejde om dels Newtons fluxionsregning og dels Leibniz' differentialer
Anvendt materiale: side 107-116 Olsen, Ole: Differentialregning b, Forlaget basis, Næstved 1998
Indhold


Supplerende stof:
Omfang Estimeret: Ikke angivet
Dækker over: 3 moduler
Særlige fokuspunkter
Væsentligste arbejdsformer
Titel 19 Differentialligninger

Introduktion til differentialligninger herunder behandles linjeelement og hældningsfelt.
Bevis for løsning af differentialligninger for eksponentiel vækst, forskudt eksponentiel vækst og logistisk vækst er gennemgået.
Sætning om lineære førsteordens differentialligninger er anvendt i opgaveregning.
Metoden separation af variable er introduceret med eksempler og opgaveregning.
Hæmmet og uhæmmet vækst er behandlet og der er talt om opstilling af differentialligninger med brug af kompartmentmodel.
Eulers metode til numerisk løsning af differentialligniner er gennemgået.
Indhold
Kernestof:
Omfang Estimeret: Ikke angivet
Dækker over: 17 moduler
Særlige fokuspunkter
Væsentligste arbejdsformer
Titel 20 Vektorfunktioner

Læs selv forløb om Vektorfunktioner
Bevis for længde af banekurve er gennemgået.
Begrebet en ellipse er introduceret og bevis for ellipsetangents ligning er gennemgået.
Indhold
Kernestof:

Supplerende stof:
Omfang Estimeret: Ikke angivet
Dækker over: 10 moduler
Særlige fokuspunkter
Væsentligste arbejdsformer
Titel 21 Funktioner i to variable

Funktioner i to variable indføres. Begreberne snitfunktion, konturplot og niveaukurve introduceres.
De partielt afledede defineres. Gradient og stationære punkter samt deres art behandles mest med opgaveregning.
Indhold
Kernestof:
Omfang Estimeret: Ikke angivet
Dækker over: 9 moduler
Særlige fokuspunkter
Væsentligste arbejdsformer
Titel 22 Sandsynlighedsregning og statistik del 2

Repetition af deskriptiv statistik og binomialfordelingen, herunder simulering af binomialfordeling.
Tæthedsfunktion og fordelingsfunktion for en kontinuert stokastisk variabel omtales.
Uegentlige integraler er defineret.
Tæthedsfunktion for normalfordelt stokastisk variabel X er introduceret og sammenhængen med P(a<X<b) er behandlet.
Fordelingsfunktion, middelværdi og spredning er behandlet, herunder er partiel integration introduceret.
Der er ført bevis for sætning om middelværdi og spredning for normalfordelt stokastisk variabel.
Standard normalfordelingen er behandlet
Normalfordelingsplot er behandlet med opgaveregning.
Lineær regression er repeteret, konfidensinterval for hældningskoefficient er omtalt og anvendelse af normalfordelingsplot for residualer til at afgøre modellens validitet er ligeledes behandlet med opgaveregning.
Indhold
Kernestof:
Omfang Estimeret: Ikke angivet
Dækker over: 18 moduler
Særlige fokuspunkter
Væsentligste arbejdsformer
Titel 23 Forberedelses materiale 2025 sandsynlighedsregning

Læs selv forløb
Indhold
Kernestof:
Omfang Estimeret: Ikke angivet
Dækker over: 6 moduler
Særlige fokuspunkter
Væsentligste arbejdsformer
Titel 24 Træning i opgaveregning og mundtlig fremstilling

Indhold
Kernestof:
Omfang Estimeret: Ikke angivet
Dækker over: 21 moduler
Særlige fokuspunkter
Væsentligste arbejdsformer