
Existence and Uniqueness Theorems for First-Order ODE’s

The general first-order ODE is

y′ = F (x, y), y(x0) = y0. (*)

We are interested in the following questions:

(i) Under what conditions can we be sure that a solution
to (*) exists?

(ii) Under what conditions can we be sure that there is
a unique solution to (*)?

Here are the answers.

Theorem 1 (Existence). Suppose that F (x, y) is a
continuous function defined in some region

R = {(x, y) : x0 − δ < x < x0 + δ, y0 − ε < y < y0 + ε}

containing the point (x0, y0). Then there exists a number
δ1 (possibly smaller than δ) so that a solution y = f(x)
to (*) is defined for x0 − δ1 < x < x0 + δ1.

Theorem 2 (Uniqueness). Suppose that both F (x, y)
and ∂F

∂y
(x, y) are continuous functions defined on a re-

gion R as in Theorem 1. Then there exists a number δ2

(possibly smaller than δ1) so that the solution y = f(x)
to (*), whose existence was guaranteed by Theorem 1, is
the unique solution to (*) for x0 − δ2 < x < x0 + δ2.

x −
0

δ
2

x +
0

δ
2

���
�

R

x

y

x

y
0

0

For a real number x and a positive value δ, the set of
numbers x satisfying x0 − δ < x < x0 + δ is called an
open interval centered at x0.

Example 3. Consider the ODE

y′ = x − y + 1, y(1) = 2.

In this case, both the function F (x, y) = x−y+1 and its
partial derivative ∂F

∂y
(x, y) = −1 are defined and contin-

uous at all points (x, y). The theorem guarantees that
a solution to the ODE exists in some open interval cen-
tered at 1, and that this solution is unique in some (pos-
sibly smaller) interval centered at 1.

In fact, an explicit solution to this equation is

y(x) = x + e1−x.

(Check this for yourself.) This solution exists (and is
the unique solution to the equation) for all real numbers
x. In other words, in this example we may choose the
numbers δ1 and δ2 as large as we please.
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Example 4. Consider the ODE

y′ = 1 + y2, y(0) = 0.

Again, both F (x, y) = 1 + y2 and ∂F
∂y

(x, y) = 2y are de-
fined and continuous at all points (x, y), so by the theo-
rem we can conclude that a solution exists in some open
interval centered at 0, and is unique in some (possibly
smaller) interval centered at 0.

By separating variables and integrating, we derive a
solution to this equation of the form

y(x) = tan(x).

As an abstract function of x, this is defined for all x 6=
. . . ,−3π/2,−π/2, π/2, 3π/2, . . .. However, in order for
this function to be considered as a solution to this ODE,
we must restrict the domain. (Remember that a solution
to a differential equation must be a continuous function!)
Specifically, the function

y = tan(x), −π/2 < x < π/2,

is a solution to the above ODE.
In this example we must choose δ1 = δ2 = π/2, al-

though the initial value δ may be chosen as large as we
please.
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Example 5. Consider the ODE

y′ = 2y/x, y(x0) = y0.

In this example, F (x, y) = 2y/x and ∂F
∂y

(x, y) = 2/x.
Both of these functions are defined for all x 6= 0, so
Theorem 2 tells us that for each x0 6= 0 there exists a
unique solution defined in an open interval around x0.

By separating variables and integrating, we derive so-
lutions to this equation of the form

y(x) = Cx2

for any constant C. Notice that all of these solutions
pass through the point (0, 0), and that none of them
pass through any point (0, y0) with y0 6= 0. So the initial
value problem

y′ = 2y/x, y(0) = 0,

has infinitely many solutions, but the initial value prob-
lem

y′ = 2y/x, y(0) = y0, y0 6= 0,

has no solutions.
For each (x0, y0) with x0 6= 0, there is a unique

parabola y = Cx2 whose graph passes through (x0, y0).
(Choose C = y0/x

2

0
.) So the initial value problem

y′ = 2y/x, y(x0) = y0, x0 6= 0, has a unique solution
defined on some interval centered at the point x0. In
fact, in this case, there exists a solution which is de-
fined for all values of x (δ1 may be chosen as large as
we please), but that there is a unique solution only on
the interval x0 − δ2 < x < x0 + δ2, where δ2 = |x0|.
This examples shows that the values δ1 and δ2 may be
different.
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Summary. The initial value problem y(x0) = y0 has

• a unique solution in an open interval containing x0

if x0 6= 0;

• no solution if x0 = 0 and y0 6= 0;

• infinitely many solutions if (x0, y0) = (0, 0).


